

Reference Sheet for the QualityCore™ Algebra II End-of-Course Assessment

Equations of a Line

Standard Form

$$Ax + By = C$$

A, B, and C are constants with A and B not

both equal to zero.

Slope-Intercept Form

$$y = mx + b$$

 (x_1,y_1) is a point.

Point-Slope Form

$$y - y_1 = m(x - x_1)$$

$$m = \text{slope}$$

 $b = y - \text{intercept}$

Quadratics

Standard Form of a Quadratic Equation

$$ax^2 + bx + c = 0$$

a, b, and c are constants, where $a \neq 0$.

Quadratic Formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Conic Sections

Circle

$$(x-h)^2 + (y-k)^2 = r^2$$

center (h,k)

r = radius

Parabola

$$y = a(x - h)^2 + k$$

axis of symmetry x = hdirectrix $y = k - \frac{1}{4a}$ vertex (h,k)focus $\left(h, k + \frac{1}{4a}\right)$

Parabola

$$x = a(y - k)^2 + h$$

axis of symmetry y = k

vertex (h,k)

$$x = a(y - k) + k$$

directrix $x = h - \frac{1}{4a}$

focus $(h + \frac{1}{4a}, k)$

Ellipse

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$$

foci $(h \pm c, k)$ where $c^2 = a^2 - b^2$, center (h,k)

Ellipse

$$\frac{(y-k)^2}{a^2} + \frac{(x-h)^2}{b^2} = 1$$

foci $(h, k \pm c)$ where $c^2 = a^2 - b^2$, center (h,k)

Hyperbola

$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$$

foci $(h \pm c, k)$ where $c^2 = a^2 + b^2$, center (h,k)

Hyperbola

$$\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$$

foci $(h, k \pm c)$ where $c^2 = a^2 + b^2$, center (h,k)

Lines and Points

Slope

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

 (x_1, y_1) and (x_2, y_2) are 2 points.

Midpoint

$$M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

M = midpointd = distance

m = slope

Distance

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Miscellaneous

$$D = rt$$

$$D = distance$$

$$I = prt$$

$$r = \text{rate}$$

 $t = \text{time}$

$$A = p \left(1 + \frac{r}{n}\right)^{nt}$$

Compound Interest

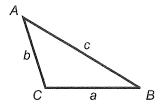
p = principal

A = amount of money after t years

n = number of times interest is compounded annually

Pythagorean Theorem

$$a^2 + b^2 = c^2$$


$$a$$
 and b = legs of right triangle

$$c = hypotenuse$$

Laws of Sines and Cosines

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Sequences, Series, and Counting

$$a_n = a_1 + (n-1)d$$

$$a_n = n^{th}$$
 term

$$s_n = \frac{n}{2}(a_1 + a_n)$$

$$n =$$
 number of the term $d =$ common difference

$$a_n = a_1(r^{n-1})$$

$$s_n = \text{sum of the first } n \text{ terms}$$

$$s_n = \frac{a_1 - a_1 r^n}{1 - r} \text{ where } r \neq 1$$

$$r =$$
common ratio

Combinations

$$_kC_m = C(k,m) = \frac{k!}{(k-m)! \ m!}$$

$$_{k}P_{m}=P(k,m)=\frac{k!}{(k-m)!}$$

$$k =$$
 number of objects in the set $m =$ number of objects selected

Circumference, Area, and Volume

$$A = \frac{1}{2}bh$$

A = area

Parallelogram

$$A = bh$$

b = base

h = height

r = radius

Trapezoid

$$A=\frac{1}{2}(b_1+b_2)h$$

C = circumference

Circle

$$A = \pi r^2$$
$$C = \pi d$$

d = diameterV = volume

 $\pi \approx 3.14$

General Prism

$$V = Bh$$

B = area of base

Right Circular Cylinder

$$V = \pi r^2 h$$

$$V = \frac{1}{3}Bh$$

$$V = \frac{1}{3}\pi r^2 h$$

$$V = \frac{4}{3}\pi r^3$$